extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic10)⋊1C22 = D20.31D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):1C2^2 | 320,358 |
(C2×Dic10)⋊2C22 = C23⋊2Dic10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):2C2^2 | 320,1155 |
(C2×Dic10)⋊3C22 = C24.30D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):3C2^2 | 320,1166 |
(C2×Dic10)⋊4C22 = C24.31D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):4C2^2 | 320,1167 |
(C2×Dic10)⋊5C22 = C42⋊10D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):5C2^2 | 320,1199 |
(C2×Dic10)⋊6C22 = C42⋊16D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):6C2^2 | 320,1228 |
(C2×Dic10)⋊7C22 = C42⋊17D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):7C2^2 | 320,1232 |
(C2×Dic10)⋊8C22 = C10.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):8C2^2 | 320,1289 |
(C2×Dic10)⋊9C22 = C10.512+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):9C2^2 | 320,1306 |
(C2×Dic10)⋊10C22 = C42⋊22D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):10C2^2 | 320,1355 |
(C2×Dic10)⋊11C22 = C42⋊23D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):11C2^2 | 320,1376 |
(C2×Dic10)⋊12C22 = D20.1D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):12C2^2 | 320,373 |
(C2×Dic10)⋊13C22 = D20.8D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):13C2^2 | 320,403 |
(C2×Dic10)⋊14C22 = M4(2)⋊D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10):14C2^2 | 320,452 |
(C2×Dic10)⋊15C22 = (C5×D4).31D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):15C2^2 | 320,845 |
(C2×Dic10)⋊16C22 = 2+ 1+4.D5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):16C2^2 | 320,869 |
(C2×Dic10)⋊17C22 = D4⋊5D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):17C2^2 | 320,1226 |
(C2×Dic10)⋊18C22 = C24.56D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):18C2^2 | 320,1258 |
(C2×Dic10)⋊19C22 = C24.32D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):19C2^2 | 320,1259 |
(C2×Dic10)⋊20C22 = C24.33D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):20C2^2 | 320,1263 |
(C2×Dic10)⋊21C22 = C24.34D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):21C2^2 | 320,1264 |
(C2×Dic10)⋊22C22 = C24.35D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):22C2^2 | 320,1265 |
(C2×Dic10)⋊23C22 = C24⋊5D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):23C2^2 | 320,1266 |
(C2×Dic10)⋊24C22 = C4⋊C4⋊21D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):24C2^2 | 320,1278 |
(C2×Dic10)⋊25C22 = C10.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):25C2^2 | 320,1282 |
(C2×Dic10)⋊26C22 = C10.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):26C2^2 | 320,1285 |
(C2×Dic10)⋊27C22 = D5×C22⋊Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):27C2^2 | 320,1298 |
(C2×Dic10)⋊28C22 = C4⋊C4⋊28D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):28C2^2 | 320,1328 |
(C2×Dic10)⋊29C22 = C10.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):29C2^2 | 320,1329 |
(C2×Dic10)⋊30C22 = C10.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):30C2^2 | 320,1330 |
(C2×Dic10)⋊31C22 = C10.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):31C2^2 | 320,1331 |
(C2×Dic10)⋊32C22 = D5×C4.4D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):32C2^2 | 320,1345 |
(C2×Dic10)⋊33C22 = C42⋊24D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):33C2^2 | 320,1377 |
(C2×Dic10)⋊34C22 = C42⋊26D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):34C2^2 | 320,1387 |
(C2×Dic10)⋊35C22 = D4.11D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10):35C2^2 | 320,1423 |
(C2×Dic10)⋊36C22 = C2×D8⋊D5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):36C2^2 | 320,1427 |
(C2×Dic10)⋊37C22 = C2×D5×SD16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):37C2^2 | 320,1430 |
(C2×Dic10)⋊38C22 = D8⋊11D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10):38C2^2 | 320,1442 |
(C2×Dic10)⋊39C22 = SD16⋊D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):39C2^2 | 320,1445 |
(C2×Dic10)⋊40C22 = D8⋊6D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):40C2^2 | 320,1447 |
(C2×Dic10)⋊41C22 = D5×C8.C22 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):41C2^2 | 320,1448 |
(C2×Dic10)⋊42C22 = C24.42D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):42C2^2 | 320,1478 |
(C2×Dic10)⋊43C22 = D20.33C23 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):43C2^2 | 320,1508 |
(C2×Dic10)⋊44C22 = D20.37C23 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):44C2^2 | 320,1623 |
(C2×Dic10)⋊45C22 = D5×2- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):45C2^2 | 320,1624 |
(C2×Dic10)⋊46C22 = C2×C4.D20 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):46C2^2 | 320,1148 |
(C2×Dic10)⋊47C22 = C2×Dic5.14D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):47C2^2 | 320,1153 |
(C2×Dic10)⋊48C22 = C24.27D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):48C2^2 | 320,1162 |
(C2×Dic10)⋊49C22 = C2×Dic5.5D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):49C2^2 | 320,1163 |
(C2×Dic10)⋊50C22 = C2×D10⋊Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):50C2^2 | 320,1180 |
(C2×Dic10)⋊51C22 = C42⋊9D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):51C2^2 | 320,1197 |
(C2×Dic10)⋊52C22 = C42⋊12D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):52C2^2 | 320,1219 |
(C2×Dic10)⋊53C22 = D20⋊23D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):53C2^2 | 320,1222 |
(C2×Dic10)⋊54C22 = C10.382+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):54C2^2 | 320,1279 |
(C2×Dic10)⋊55C22 = C10.1212+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):55C2^2 | 320,1326 |
(C2×Dic10)⋊56C22 = C22×C40⋊C2 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):56C2^2 | 320,1411 |
(C2×Dic10)⋊57C22 = C2×C8⋊D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):57C2^2 | 320,1418 |
(C2×Dic10)⋊58C22 = C2×C20.48D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):58C2^2 | 320,1456 |
(C2×Dic10)⋊59C22 = C24.72D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):59C2^2 | 320,1463 |
(C2×Dic10)⋊60C22 = C2×D10⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):60C2^2 | 320,1181 |
(C2×Dic10)⋊61C22 = C42⋊8D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):61C2^2 | 320,1196 |
(C2×Dic10)⋊62C22 = D20⋊20D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):62C2^2 | 320,1284 |
(C2×Dic10)⋊63C22 = C2×C8.D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):63C2^2 | 320,1419 |
(C2×Dic10)⋊64C22 = C40.9C23 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10):64C2^2 | 320,1420 |
(C2×Dic10)⋊65C22 = C2×D4.D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):65C2^2 | 320,1465 |
(C2×Dic10)⋊66C22 = C22×D4.D5 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):66C2^2 | 320,1466 |
(C2×Dic10)⋊67C22 = C2×C20.17D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):67C2^2 | 320,1469 |
(C2×Dic10)⋊68C22 = C24.41D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):68C2^2 | 320,1477 |
(C2×Dic10)⋊69C22 = C20.C24 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10):69C2^2 | 320,1494 |
(C2×Dic10)⋊70C22 = C2×D4.9D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):70C2^2 | 320,1495 |
(C2×Dic10)⋊71C22 = C22×D4⋊2D5 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):71C2^2 | 320,1613 |
(C2×Dic10)⋊72C22 = C2×D4⋊6D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):72C2^2 | 320,1614 |
(C2×Dic10)⋊73C22 = C22×Q8×D5 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):73C2^2 | 320,1615 |
(C2×Dic10)⋊74C22 = C2×D5×C4○D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):74C2^2 | 320,1618 |
(C2×Dic10)⋊75C22 = C2×D4.10D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):75C2^2 | 320,1620 |
(C2×Dic10)⋊76C22 = C10.C25 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10):76C2^2 | 320,1621 |
(C2×Dic10)⋊77C22 = C22×C4○D20 | φ: trivial image | 160 | | (C2xDic10):77C2^2 | 320,1611 |
(C2×Dic10)⋊78C22 = C2×D4⋊8D10 | φ: trivial image | 80 | | (C2xDic10):78C2^2 | 320,1619 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic10).1C22 = C42.F5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 4- | (C2xDic10).1C2^2 | 320,193 |
(C2×Dic10).2C22 = C42.2F5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10).2C2^2 | 320,194 |
(C2×Dic10).3C22 = C20.14Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).3C2^2 | 320,308 |
(C2×Dic10).4C22 = C8⋊5D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).4C2^2 | 320,320 |
(C2×Dic10).5C22 = C8.8D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).5C2^2 | 320,323 |
(C2×Dic10).6C22 = C42.264D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).6C2^2 | 320,324 |
(C2×Dic10).7C22 = C20⋊4Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).7C2^2 | 320,326 |
(C2×Dic10).8C22 = C42.14D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).8C2^2 | 320,330 |
(C2×Dic10).9C22 = C8⋊D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).9C2^2 | 320,339 |
(C2×Dic10).10C22 = C42.20D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).10C2^2 | 320,341 |
(C2×Dic10).11C22 = C8.D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).11C2^2 | 320,342 |
(C2×Dic10).12C22 = C23.34D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).12C2^2 | 320,348 |
(C2×Dic10).13C22 = C23.35D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).13C2^2 | 320,349 |
(C2×Dic10).14C22 = C23.10D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).14C2^2 | 320,350 |
(C2×Dic10).15C22 = C22⋊Dic20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).15C2^2 | 320,366 |
(C2×Dic10).16C22 = C20⋊SD16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).16C2^2 | 320,468 |
(C2×Dic10).17C22 = D20.19D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).17C2^2 | 320,471 |
(C2×Dic10).18C22 = C4⋊Dic20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).18C2^2 | 320,476 |
(C2×Dic10).19C22 = C40⋊30D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).19C2^2 | 320,741 |
(C2×Dic10).20C22 = C40.82D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).20C2^2 | 320,743 |
(C2×Dic10).21C22 = C40⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).21C2^2 | 320,761 |
(C2×Dic10).22C22 = C40.4D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).22C2^2 | 320,764 |
(C2×Dic10).23C22 = C10.12- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).23C2^2 | 320,1172 |
(C2×Dic10).24C22 = C10.62- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).24C2^2 | 320,1187 |
(C2×Dic10).25C22 = C42.90D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).25C2^2 | 320,1191 |
(C2×Dic10).26C22 = C42.97D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).26C2^2 | 320,1204 |
(C2×Dic10).27C22 = D4⋊5Dic10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).27C2^2 | 320,1211 |
(C2×Dic10).28C22 = D4⋊6Dic10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).28C2^2 | 320,1215 |
(C2×Dic10).29C22 = C42.115D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).29C2^2 | 320,1233 |
(C2×Dic10).30C22 = C42.117D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).30C2^2 | 320,1235 |
(C2×Dic10).31C22 = C42.118D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).31C2^2 | 320,1236 |
(C2×Dic10).32C22 = Q8×Dic10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).32C2^2 | 320,1238 |
(C2×Dic10).33C22 = D20⋊10Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).33C2^2 | 320,1251 |
(C2×Dic10).34C22 = C42.133D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).34C2^2 | 320,1254 |
(C2×Dic10).35C22 = C10.352+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).35C2^2 | 320,1274 |
(C2×Dic10).36C22 = C10.742- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).36C2^2 | 320,1293 |
(C2×Dic10).37C22 = C10.582+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).37C2^2 | 320,1318 |
(C2×Dic10).38C22 = C10.812- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).38C2^2 | 320,1323 |
(C2×Dic10).39C22 = C10.632+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).39C2^2 | 320,1332 |
(C2×Dic10).40C22 = C42.144D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).40C2^2 | 320,1354 |
(C2×Dic10).41C22 = C42.145D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).41C2^2 | 320,1356 |
(C2×Dic10).42C22 = C42.148D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).42C2^2 | 320,1361 |
(C2×Dic10).43C22 = C42.157D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).43C2^2 | 320,1371 |
(C2×Dic10).44C22 = C42.158D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).44C2^2 | 320,1372 |
(C2×Dic10).45C22 = C42.165D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).45C2^2 | 320,1384 |
(C2×Dic10).46C22 = (D4×C10).C4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).46C2^2 | 320,261 |
(C2×Dic10).47C22 = (Q8×C10).C4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).47C2^2 | 320,267 |
(C2×Dic10).48C22 = M4(2).19D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).48C2^2 | 320,372 |
(C2×Dic10).49C22 = D20.2D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).49C2^2 | 320,375 |
(C2×Dic10).50C22 = D5×C4.10D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).50C2^2 | 320,377 |
(C2×Dic10).51C22 = D20.4D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).51C2^2 | 320,379 |
(C2×Dic10).52C22 = D20.7D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | 8- | (C2xDic10).52C2^2 | 320,382 |
(C2×Dic10).53C22 = D4.D5⋊5C4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).53C2^2 | 320,384 |
(C2×Dic10).54C22 = Dic5⋊6SD16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).54C2^2 | 320,385 |
(C2×Dic10).55C22 = Dic10⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).55C2^2 | 320,389 |
(C2×Dic10).56C22 = C20⋊Q8⋊C2 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).56C2^2 | 320,392 |
(C2×Dic10).57C22 = Dic10.D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).57C2^2 | 320,394 |
(C2×Dic10).58C22 = (C8×Dic5)⋊C2 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).58C2^2 | 320,395 |
(C2×Dic10).59C22 = D4⋊(C4×D5) | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).59C2^2 | 320,398 |
(C2×Dic10).60C22 = D4⋊2D5⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).60C2^2 | 320,399 |
(C2×Dic10).61C22 = D10⋊SD16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).61C2^2 | 320,405 |
(C2×Dic10).62C22 = C5⋊2C8⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).62C2^2 | 320,407 |
(C2×Dic10).63C22 = D4⋊3D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).63C2^2 | 320,408 |
(C2×Dic10).64C22 = D4.D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).64C2^2 | 320,410 |
(C2×Dic10).65C22 = D20.D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).65C2^2 | 320,414 |
(C2×Dic10).66C22 = C5⋊Q16⋊5C4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).66C2^2 | 320,416 |
(C2×Dic10).67C22 = Dic5⋊4Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).67C2^2 | 320,417 |
(C2×Dic10).68C22 = Dic5.3Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).68C2^2 | 320,419 |
(C2×Dic10).69C22 = Dic5⋊Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).69C2^2 | 320,420 |
(C2×Dic10).70C22 = C40⋊8C4.C2 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).70C2^2 | 320,424 |
(C2×Dic10).71C22 = Dic10.11D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).71C2^2 | 320,425 |
(C2×Dic10).72C22 = D5×Q8⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).72C2^2 | 320,428 |
(C2×Dic10).73C22 = (Q8×D5)⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).73C2^2 | 320,429 |
(C2×Dic10).74C22 = Q8⋊2D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).74C2^2 | 320,433 |
(C2×Dic10).75C22 = D10⋊4Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).75C2^2 | 320,435 |
(C2×Dic10).76C22 = Q8.D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).76C2^2 | 320,437 |
(C2×Dic10).77C22 = D10⋊Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).77C2^2 | 320,440 |
(C2×Dic10).78C22 = C5⋊2C8.D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).78C2^2 | 320,443 |
(C2×Dic10).79C22 = Dic5⋊SD16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).79C2^2 | 320,445 |
(C2×Dic10).80C22 = D4.9D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 4- | (C2xDic10).80C2^2 | 320,453 |
(C2×Dic10).81C22 = D4.10D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10).81C2^2 | 320,454 |
(C2×Dic10).82C22 = Dic5⋊8SD16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).82C2^2 | 320,479 |
(C2×Dic10).83C22 = Dic20⋊15C4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).83C2^2 | 320,480 |
(C2×Dic10).84C22 = Dic10⋊Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).84C2^2 | 320,481 |
(C2×Dic10).85C22 = Dic10.Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).85C2^2 | 320,484 |
(C2×Dic10).86C22 = D10.12SD16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).86C2^2 | 320,489 |
(C2×Dic10).87C22 = C8⋊8D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).87C2^2 | 320,491 |
(C2×Dic10).88C22 = C20.(C4○D4) | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).88C2^2 | 320,494 |
(C2×Dic10).89C22 = C8.2D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).89C2^2 | 320,495 |
(C2×Dic10).90C22 = Dic5⋊5Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).90C2^2 | 320,500 |
(C2×Dic10).91C22 = Dic10⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).91C2^2 | 320,502 |
(C2×Dic10).92C22 = Dic10.2Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).92C2^2 | 320,504 |
(C2×Dic10).93C22 = D10.8Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).93C2^2 | 320,511 |
(C2×Dic10).94C22 = C8⋊3D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).94C2^2 | 320,513 |
(C2×Dic10).95C22 = D10⋊2Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).95C2^2 | 320,514 |
(C2×Dic10).96C22 = C2.D8⋊7D5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).96C2^2 | 320,515 |
(C2×Dic10).97C22 = C40⋊21(C2×C4) | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).97C2^2 | 320,516 |
(C2×Dic10).98C22 = C8.20D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | 4- | (C2xDic10).98C2^2 | 320,523 |
(C2×Dic10).99C22 = C8.24D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10).99C2^2 | 320,525 |
(C2×Dic10).100C22 = C4⋊C4.230D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).100C2^2 | 320,597 |
(C2×Dic10).101C22 = C4⋊C4.231D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).101C2^2 | 320,598 |
(C2×Dic10).102C22 = C4⋊C4.233D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).102C2^2 | 320,623 |
(C2×Dic10).103C22 = D4.1D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).103C2^2 | 320,643 |
(C2×Dic10).104C22 = D4.2D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).104C2^2 | 320,646 |
(C2×Dic10).105C22 = Q8.1D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).105C2^2 | 320,655 |
(C2×Dic10).106C22 = C20⋊7Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).106C2^2 | 320,658 |
(C2×Dic10).107C22 = C5⋊2C8⋊23D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).107C2^2 | 320,668 |
(C2×Dic10).108C22 = C4.(D4×D5) | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).108C2^2 | 320,669 |
(C2×Dic10).109C22 = (C2×C10)⋊Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).109C2^2 | 320,678 |
(C2×Dic10).110C22 = C5⋊(C8.D4) | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).110C2^2 | 320,679 |
(C2×Dic10).111C22 = C42.214D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).111C2^2 | 320,686 |
(C2×Dic10).112C22 = C42.65D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).112C2^2 | 320,687 |
(C2×Dic10).113C22 = C42.216D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).113C2^2 | 320,695 |
(C2×Dic10).114C22 = C42.71D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).114C2^2 | 320,696 |
(C2×Dic10).115C22 = C42.74D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).115C2^2 | 320,701 |
(C2×Dic10).116C22 = C20⋊4SD16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).116C2^2 | 320,703 |
(C2×Dic10).117C22 = C42.80D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).117C2^2 | 320,713 |
(C2×Dic10).118C22 = C42.82D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).118C2^2 | 320,716 |
(C2×Dic10).119C22 = C20⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).119C2^2 | 320,719 |
(C2×Dic10).120C22 = C20.11Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).120C2^2 | 320,720 |
(C2×Dic10).121C22 = D4.3D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10).121C2^2 | 320,768 |
(C2×Dic10).122C22 = D4.5D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | 4- | (C2xDic10).122C2^2 | 320,770 |
(C2×Dic10).123C22 = (C2×D8).D5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).123C2^2 | 320,780 |
(C2×Dic10).124C22 = C40⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).124C2^2 | 320,781 |
(C2×Dic10).125C22 = C40.22D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).125C2^2 | 320,782 |
(C2×Dic10).126C22 = Dic10⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).126C2^2 | 320,785 |
(C2×Dic10).127C22 = Dic5⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).127C2^2 | 320,789 |
(C2×Dic10).128C22 = (C5×Q8).D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).128C2^2 | 320,793 |
(C2×Dic10).129C22 = C40.31D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).129C2^2 | 320,794 |
(C2×Dic10).130C22 = C40.43D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).130C2^2 | 320,795 |
(C2×Dic10).131C22 = D10⋊8SD16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).131C2^2 | 320,797 |
(C2×Dic10).132C22 = Dic10.16D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).132C2^2 | 320,800 |
(C2×Dic10).133C22 = C40⋊15D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).133C2^2 | 320,802 |
(C2×Dic10).134C22 = C40.26D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).134C2^2 | 320,808 |
(C2×Dic10).135C22 = Dic5⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).135C2^2 | 320,809 |
(C2×Dic10).136C22 = D10⋊5Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).136C2^2 | 320,813 |
(C2×Dic10).137C22 = C40.37D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).137C2^2 | 320,817 |
(C2×Dic10).138C22 = M4(2).13D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).138C2^2 | 320,827 |
(C2×Dic10).139C22 = D20.38D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).139C2^2 | 320,828 |
(C2×Dic10).140C22 = M4(2).16D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | 8- | (C2xDic10).140C2^2 | 320,831 |
(C2×Dic10).141C22 = D20.40D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).141C2^2 | 320,832 |
(C2×Dic10).142C22 = (C2×C10)⋊8Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).142C2^2 | 320,855 |
(C2×Dic10).143C22 = (C5×D4).32D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).143C2^2 | 320,866 |
(C2×Dic10).144C22 = 2- 1+4.2D5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).144C2^2 | 320,873 |
(C2×Dic10).145C22 = (C2×D4).9F5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).145C2^2 | 320,1115 |
(C2×Dic10).146C22 = (C2×Q8).7F5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).146C2^2 | 320,1127 |
(C2×Dic10).147C22 = C10.102+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).147C2^2 | 320,1183 |
(C2×Dic10).148C22 = C10.52- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).148C2^2 | 320,1185 |
(C2×Dic10).149C22 = C42.94D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).149C2^2 | 320,1201 |
(C2×Dic10).150C22 = D4⋊6D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).150C2^2 | 320,1227 |
(C2×Dic10).151C22 = C42.114D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).151C2^2 | 320,1231 |
(C2×Dic10).152C22 = Dic10⋊10Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).152C2^2 | 320,1239 |
(C2×Dic10).153C22 = C42.122D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).153C2^2 | 320,1240 |
(C2×Dic10).154C22 = Q8×D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).154C2^2 | 320,1247 |
(C2×Dic10).155C22 = Q8⋊5D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).155C2^2 | 320,1248 |
(C2×Dic10).156C22 = C20⋊(C4○D4) | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).156C2^2 | 320,1268 |
(C2×Dic10).157C22 = C10.682- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).157C2^2 | 320,1269 |
(C2×Dic10).158C22 = C4⋊C4.178D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).158C2^2 | 320,1272 |
(C2×Dic10).159C22 = C10.362+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).159C2^2 | 320,1275 |
(C2×Dic10).160C22 = C10.392+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).160C2^2 | 320,1280 |
(C2×Dic10).161C22 = C10.732- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).161C2^2 | 320,1283 |
(C2×Dic10).162C22 = C10.452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).162C2^2 | 320,1288 |
(C2×Dic10).163C22 = (Q8×Dic5)⋊C2 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).163C2^2 | 320,1294 |
(C2×Dic10).164C22 = C10.502+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).164C2^2 | 320,1295 |
(C2×Dic10).165C22 = C10.152- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).165C2^2 | 320,1297 |
(C2×Dic10).166C22 = C10.1182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).166C2^2 | 320,1307 |
(C2×Dic10).167C22 = C10.522+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).167C2^2 | 320,1308 |
(C2×Dic10).168C22 = C10.222- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).168C2^2 | 320,1312 |
(C2×Dic10).169C22 = C10.232- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).169C2^2 | 320,1313 |
(C2×Dic10).170C22 = C10.242- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).170C2^2 | 320,1315 |
(C2×Dic10).171C22 = C10.262- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).171C2^2 | 320,1319 |
(C2×Dic10).172C22 = C4⋊C4.197D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).172C2^2 | 320,1321 |
(C2×Dic10).173C22 = C10.802- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).173C2^2 | 320,1322 |
(C2×Dic10).174C22 = C10.822- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).174C2^2 | 320,1327 |
(C2×Dic10).175C22 = C10.842- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).175C2^2 | 320,1334 |
(C2×Dic10).176C22 = C10.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).176C2^2 | 320,1336 |
(C2×Dic10).177C22 = C10.852- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).177C2^2 | 320,1337 |
(C2×Dic10).178C22 = C10.692+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).178C2^2 | 320,1339 |
(C2×Dic10).179C22 = C42.233D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).179C2^2 | 320,1340 |
(C2×Dic10).180C22 = C42.137D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).180C2^2 | 320,1341 |
(C2×Dic10).181C22 = C42.138D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).181C2^2 | 320,1342 |
(C2×Dic10).182C22 = C42.140D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).182C2^2 | 320,1344 |
(C2×Dic10).183C22 = C42.141D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).183C2^2 | 320,1347 |
(C2×Dic10).184C22 = C42.236D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).184C2^2 | 320,1360 |
(C2×Dic10).185C22 = C42.237D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).185C2^2 | 320,1363 |
(C2×Dic10).186C22 = C42.150D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).186C2^2 | 320,1364 |
(C2×Dic10).187C22 = C42.151D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).187C2^2 | 320,1365 |
(C2×Dic10).188C22 = C42.155D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).188C2^2 | 320,1369 |
(C2×Dic10).189C22 = C42.189D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).189C2^2 | 320,1378 |
(C2×Dic10).190C22 = C42.161D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).190C2^2 | 320,1379 |
(C2×Dic10).191C22 = C42.238D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).191C2^2 | 320,1388 |
(C2×Dic10).192C22 = Dic10⋊9Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).192C2^2 | 320,1394 |
(C2×Dic10).193C22 = D5×C4⋊Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).193C2^2 | 320,1395 |
(C2×Dic10).194C22 = C42.171D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).194C2^2 | 320,1396 |
(C2×Dic10).195C22 = D20⋊8Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).195C2^2 | 320,1399 |
(C2×Dic10).196C22 = C42.241D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).196C2^2 | 320,1400 |
(C2×Dic10).197C22 = C42.174D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).197C2^2 | 320,1401 |
(C2×Dic10).198C22 = C42.178D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).198C2^2 | 320,1405 |
(C2×Dic10).199C22 = C42.180D10 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).199C2^2 | 320,1407 |
(C2×Dic10).200C22 = D4.13D20 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | 4- | (C2xDic10).200C2^2 | 320,1425 |
(C2×Dic10).201C22 = C2×D8⋊3D5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).201C2^2 | 320,1428 |
(C2×Dic10).202C22 = C2×SD16⋊D5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).202C2^2 | 320,1432 |
(C2×Dic10).203C22 = C2×SD16⋊3D5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).203C2^2 | 320,1433 |
(C2×Dic10).204C22 = C2×D5×Q16 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).204C2^2 | 320,1435 |
(C2×Dic10).205C22 = C2×Q16⋊D5 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).205C2^2 | 320,1436 |
(C2×Dic10).206C22 = D20.47D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | 4- | (C2xDic10).206C2^2 | 320,1443 |
(C2×Dic10).207C22 = D20.44D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | 8- | (C2xDic10).207C2^2 | 320,1451 |
(C2×Dic10).208C22 = Q8×C5⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).208C2^2 | 320,1487 |
(C2×Dic10).209C22 = C10.1042- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).209C2^2 | 320,1496 |
(C2×Dic10).210C22 = C10.1072- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).210C2^2 | 320,1503 |
(C2×Dic10).211C22 = D20.35C23 | φ: C22/C1 → C22 ⊆ Out C2×Dic10 | 160 | 8- | (C2xDic10).211C2^2 | 320,1510 |
(C2×Dic10).212C22 = C4×C40⋊C2 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).212C2^2 | 320,318 |
(C2×Dic10).213C22 = C4×Dic20 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).213C2^2 | 320,325 |
(C2×Dic10).214C22 = C42.16D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).214C2^2 | 320,337 |
(C2×Dic10).215C22 = Dic20⋊9C4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).215C2^2 | 320,343 |
(C2×Dic10).216C22 = D20.32D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).216C2^2 | 320,360 |
(C2×Dic10).217C22 = D20⋊14D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).217C2^2 | 320,361 |
(C2×Dic10).218C22 = Dic10⋊14D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).218C2^2 | 320,365 |
(C2×Dic10).219C22 = Dic10.3Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).219C2^2 | 320,456 |
(C2×Dic10).220C22 = C42.36D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).220C2^2 | 320,472 |
(C2×Dic10).221C22 = Dic10⋊8D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).221C2^2 | 320,475 |
(C2×Dic10).222C22 = C20.7Q16 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).222C2^2 | 320,477 |
(C2×Dic10).223C22 = Dic10⋊4Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).223C2^2 | 320,478 |
(C2×Dic10).224C22 = C2×C20.44D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).224C2^2 | 320,730 |
(C2×Dic10).225C22 = C23.23D20 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).225C2^2 | 320,740 |
(C2×Dic10).226C22 = C23.46D20 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).226C2^2 | 320,747 |
(C2×Dic10).227C22 = C23.49D20 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).227C2^2 | 320,760 |
(C2×Dic10).228C22 = C2×Dic5.D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).228C2^2 | 320,1098 |
(C2×Dic10).229C22 = (C4×D5).D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10).229C2^2 | 320,1099 |
(C2×Dic10).230C22 = C2×C20⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).230C2^2 | 320,1140 |
(C2×Dic10).231C22 = C42.274D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).231C2^2 | 320,1142 |
(C2×Dic10).232C22 = C42.276D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).232C2^2 | 320,1149 |
(C2×Dic10).233C22 = C42.277D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).233C2^2 | 320,1151 |
(C2×Dic10).234C22 = C2×C20⋊Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).234C2^2 | 320,1169 |
(C2×Dic10).235C22 = C10.2- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).235C2^2 | 320,1179 |
(C2×Dic10).236C22 = C42.88D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).236C2^2 | 320,1189 |
(C2×Dic10).237C22 = C42.89D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).237C2^2 | 320,1190 |
(C2×Dic10).238C22 = C42.93D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).238C2^2 | 320,1200 |
(C2×Dic10).239C22 = C42.96D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).239C2^2 | 320,1203 |
(C2×Dic10).240C22 = C42.98D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).240C2^2 | 320,1205 |
(C2×Dic10).241C22 = C42.99D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).241C2^2 | 320,1206 |
(C2×Dic10).242C22 = D4×Dic10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).242C2^2 | 320,1209 |
(C2×Dic10).243C22 = C42.102D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).243C2^2 | 320,1210 |
(C2×Dic10).244C22 = C42.105D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).244C2^2 | 320,1213 |
(C2×Dic10).245C22 = C42.106D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).245C2^2 | 320,1214 |
(C2×Dic10).246C22 = C42.228D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).246C2^2 | 320,1220 |
(C2×Dic10).247C22 = D20⋊24D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).247C2^2 | 320,1223 |
(C2×Dic10).248C22 = Dic10⋊23D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).248C2^2 | 320,1224 |
(C2×Dic10).249C22 = Q8⋊5Dic10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).249C2^2 | 320,1241 |
(C2×Dic10).250C22 = Q8⋊6Dic10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).250C2^2 | 320,1242 |
(C2×Dic10).251C22 = C42.135D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).251C2^2 | 320,1256 |
(C2×Dic10).252C22 = C42.136D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).252C2^2 | 320,1257 |
(C2×Dic10).253C22 = Dic10⋊19D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).253C2^2 | 320,1270 |
(C2×Dic10).254C22 = C10.162- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).254C2^2 | 320,1300 |
(C2×Dic10).255C22 = C10.172- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).255C2^2 | 320,1301 |
(C2×Dic10).256C22 = Dic10⋊21D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).256C2^2 | 320,1304 |
(C2×Dic10).257C22 = C10.792- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).257C2^2 | 320,1320 |
(C2×Dic10).258C22 = C42.143D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).258C2^2 | 320,1353 |
(C2×Dic10).259C22 = D20⋊7Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).259C2^2 | 320,1362 |
(C2×Dic10).260C22 = C42.154D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).260C2^2 | 320,1368 |
(C2×Dic10).261C22 = C42.159D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).261C2^2 | 320,1373 |
(C2×Dic10).262C22 = C42.160D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).262C2^2 | 320,1374 |
(C2×Dic10).263C22 = C42.162D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).263C2^2 | 320,1380 |
(C2×Dic10).264C22 = C42.164D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).264C2^2 | 320,1382 |
(C2×Dic10).265C22 = C2×D40⋊7C2 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).265C2^2 | 320,1413 |
(C2×Dic10).266C22 = C22×Dic20 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).266C2^2 | 320,1414 |
(C2×Dic10).267C22 = C10.1472+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).267C2^2 | 320,1505 |
(C2×Dic10).268C22 = C4○D20⋊9C4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).268C2^2 | 320,593 |
(C2×Dic10).269C22 = C2×C10.Q16 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).269C2^2 | 320,596 |
(C2×Dic10).270C22 = C4○D20⋊10C4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).270C2^2 | 320,629 |
(C2×Dic10).271C22 = C4.(C2×D20) | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).271C2^2 | 320,631 |
(C2×Dic10).272C22 = C4×D4.D5 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).272C2^2 | 320,644 |
(C2×Dic10).273C22 = C42.51D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).273C2^2 | 320,645 |
(C2×Dic10).274C22 = C4×C5⋊Q16 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).274C2^2 | 320,656 |
(C2×Dic10).275C22 = C42.59D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).275C2^2 | 320,657 |
(C2×Dic10).276C22 = D20⋊17D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).276C2^2 | 320,664 |
(C2×Dic10).277C22 = Dic10⋊17D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).277C2^2 | 320,667 |
(C2×Dic10).278C22 = D20.37D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).278C2^2 | 320,674 |
(C2×Dic10).279C22 = Dic10.37D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).279C2^2 | 320,677 |
(C2×Dic10).280C22 = C42.61D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).280C2^2 | 320,681 |
(C2×Dic10).281C22 = Dic10.4Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).281C2^2 | 320,690 |
(C2×Dic10).282C22 = Dic10⋊9D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).282C2^2 | 320,702 |
(C2×Dic10).283C22 = C20⋊Q16 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).283C2^2 | 320,717 |
(C2×Dic10).284C22 = Dic10⋊5Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).284C2^2 | 320,718 |
(C2×Dic10).285C22 = Dic10⋊6Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).285C2^2 | 320,721 |
(C2×Dic10).286C22 = M4(2).31D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10).286C2^2 | 320,759 |
(C2×Dic10).287C22 = C2×C4.12D20 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).287C2^2 | 320,763 |
(C2×Dic10).288C22 = C2×Dic5⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).288C2^2 | 320,1168 |
(C2×Dic10).289C22 = C10.82+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).289C2^2 | 320,1176 |
(C2×Dic10).290C22 = C10.2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).290C2^2 | 320,1182 |
(C2×Dic10).291C22 = C42.87D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).291C2^2 | 320,1188 |
(C2×Dic10).292C22 = C42.188D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).292C2^2 | 320,1194 |
(C2×Dic10).293C22 = C42.92D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).293C2^2 | 320,1198 |
(C2×Dic10).294C22 = C4×D4⋊2D5 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).294C2^2 | 320,1208 |
(C2×Dic10).295C22 = C42.108D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).295C2^2 | 320,1218 |
(C2×Dic10).296C22 = C42.229D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).296C2^2 | 320,1229 |
(C2×Dic10).297C22 = C4×Q8×D5 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).297C2^2 | 320,1243 |
(C2×Dic10).298C22 = C42.125D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).298C2^2 | 320,1244 |
(C2×Dic10).299C22 = C42.232D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).299C2^2 | 320,1250 |
(C2×Dic10).300C22 = C42.134D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).300C2^2 | 320,1255 |
(C2×Dic10).301C22 = Dic10⋊20D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).301C2^2 | 320,1271 |
(C2×Dic10).302C22 = D20⋊22D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).302C2^2 | 320,1303 |
(C2×Dic10).303C22 = Dic10⋊22D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).303C2^2 | 320,1305 |
(C2×Dic10).304C22 = C42.139D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).304C2^2 | 320,1343 |
(C2×Dic10).305C22 = Dic10⋊10D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).305C2^2 | 320,1349 |
(C2×Dic10).306C22 = Dic10⋊7Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).306C2^2 | 320,1357 |
(C2×Dic10).307C22 = C42.152D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).307C2^2 | 320,1366 |
(C2×Dic10).308C22 = C42.166D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).308C2^2 | 320,1385 |
(C2×Dic10).309C22 = Dic10⋊11D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).309C2^2 | 320,1390 |
(C2×Dic10).310C22 = Dic10⋊8Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).310C2^2 | 320,1393 |
(C2×Dic10).311C22 = D20⋊9Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).311C2^2 | 320,1402 |
(C2×Dic10).312C22 = C42.177D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).312C2^2 | 320,1404 |
(C2×Dic10).313C22 = C2×C20.C23 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).313C2^2 | 320,1480 |
(C2×Dic10).314C22 = C22×C5⋊Q16 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).314C2^2 | 320,1481 |
(C2×Dic10).315C22 = C2×Dic5⋊Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).315C2^2 | 320,1482 |
(C2×Dic10).316C22 = C10.442- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).316C2^2 | 320,1488 |
(C2×Dic10).317C22 = C2×D4.8D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).317C2^2 | 320,1493 |
(C2×Dic10).318C22 = C10.1052- 1+4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).318C2^2 | 320,1497 |
(C2×Dic10).319C22 = (C2×C20)⋊17D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).319C2^2 | 320,1504 |
(C2×Dic10).320C22 = C2×Q8.10D10 | φ: C22/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).320C2^2 | 320,1617 |
(C2×Dic10).321C22 = C2×C4×Dic10 | φ: trivial image | 320 | | (C2xDic10).321C2^2 | 320,1139 |
(C2×Dic10).322C22 = C4×C4○D20 | φ: trivial image | 160 | | (C2xDic10).322C2^2 | 320,1146 |
(C2×Dic10).323C22 = C42.91D10 | φ: trivial image | 160 | | (C2xDic10).323C2^2 | 320,1195 |
(C2×Dic10).324C22 = Dic10⋊24D4 | φ: trivial image | 160 | | (C2xDic10).324C2^2 | 320,1225 |